

Figure 2. Compressibility factors vs. mole fraction of n-butane at constant pressures

ment and facilities normally operated by the petroleum engineering, electrical engineering, and chemical engineering departments of the college, as well as by the Texas Petroleum Research Committee. This assistance is gratefully acknowledged.

LITERATURE CITED

- (1) Amagat, E. H., Ann. chim. phys. 6 (29), 68 (1893).
- (2) Bartlett, E. P., J. Am. Chem. Soc. 49, 687 (1927).
- (3) Ibid., 49, 1955 (1927).
- (4) Bartlett, E. P., Cupples, H. L., Tremearne, T. H., Ibid., 50, 1275 (1928).
- (5) Bartlett, E. P., Hetherington, H. C., Kvalnes, H. M., Tremearne, T. H., Ibid., 52, 1374 (1930). (6) Beattie, J. A., Chem. Rev. 44, 141 (1949). (7) Beattie, J. A., J. Am. Chem. Soc. 51, 19 (1929).

- (8) Beattie, J. A., Proc. Am. Acad. Arts Sci. <u>69</u>, 389 (1934).
- (9) Beattie, J. A., Bridgeman, O. C., J. Am. Chem. Soc. 50, 3133 (1928).
- (10) Beattie, J. A., Simard, G. L., Su, G. J., Ibid., 61, 26 (1939). (11) Benedict, M., Ibid., 59, 2224 (1937)
- (12) Bloomer, O. T., Rao, K. N., Inst. Gas Technol. Research Bull.,
- No. 18 (1952). (13) Hagenbach, W. P., Comings, E. W., Ind. Eng. Chem. 45, 606 (1953).
- (14) Keyes, F. G., Proc. Am. Acad. Arts Sci. 68, 505 (1933).
- (15) Keyes, F. G., Burks, H. Q., J. Am. Chem. Soc. <u>50</u>, 1100 (1928).
 (16) Michels, A., Wouters, H., Boer, J. de, Physica <u>1</u>, 589 (1934).
- (17) Ibid., 3, 585 (1936).
- (18) Olds, R. H., Reamer, H. H., Sage, B. H., Lacey, W. N., Ind. Eng. Chem. 36, 282 (1944).
- (19) Otto, J., Michels, A., Wouters, H., Z. Physik 35, 97 (1934).
- (20) Perry, J. H., Hermann, C. V., J. Phys. Chem. 39, 1189 (1935).
- (21) Reamer, H. H., Selleck, F. T., Sage, B. H., Lacey, W. N., Ind. Eng. Chem. 44, 198 (1952).
- (22) Sage, B. H., Lacey, W. N., "Monograph on A.P.I. Research Project 37. Thermodynamic Properties of the Lighter Hydrocarbons and Nitrogen," 1st ed., American Petroleum Institute, New York, 1950.
- (23) Sage, B. H., Webster, D. C., Lacey, W. N., Ind. Eng. Chem. 29, 1188 (1937).
- (24) Smith, L. B., Taylor, R. S., Proc. Am. Acad. Arts Sci. 45, 2107 (1923)
- (25) Tsiklis, D. S., Doklady Akad. Nauk U.S.S.R. 79, 289 (1951). (26) Watson, G. M., Stevens, A. B., Evans, R. B., Hodges, D., Jr., Ind. Eng. Chem. 46, 362 (1954).
- Received for review April 5, 1955 Accepted September 18, 1955

Diffusion Coefficients in Hydrocarbon Systems Methane-n-Butane-Methane in Liquid Phase

H. H. REAMER AND B. H. SAGE California Institute of Technology, Pasadena, Calif.

here is insufficient information about the diffusion coefficients of the lighter hydrocarbons in the liquid phase for predicting the nonequilibrium behavior of petroleum during production and refining operations.

By following methods established earlier, the Fick diffusion coefficient of methane in the liquid phase of the methane-n-butane system was determined at pressures up to nearly 2000 pounds/square inch in the temperature interval between 10° and 220° F. The results are presented as a function of the state of the phase.

These measurements indicate that the composition and temperature of the liquid phase have a significant influence on the Fick diffusion coefficient. The magnitude of variations in the coefficient within the range of temperatures and compositions investigated makes it necessary to take both of these factors into account in treating many physical situations of industrial interest.

INTRODUCTION

A knowledge of the molecular transport characteristics of the lighter hydrocarbons is of value in many operations associated with the production and refining of petroleum. Little experimental work is available in this field except the early measurements of Pomeroy (9) and of Lacey and coworkers (1,4,5,7). Kirkwood (6) has assembled the basic relations of transport and these have been applied to a number of situations of engineering interest (8). Drickamer made a number of investigations of transport in liquid and gas phases at elevated pressures, of which his studies of diffusion through an interface (18, 19) are given as examples. There has been increasing interest in resistances at interfaces (2) but, in the case of hydrocarbon systems involving transfer from a liquid to a gas phase (16), it appears that this resistance is not large. Such behavior is

TABLE I. DIFFUSION OF METHANE INTO THE LIQUID PHASE OF THE METHANE-BUTANE SYSTEM (EXPERIMENTAL MEASUREMENTS)

Pressure,	_	Wt.	Pressure,		Wt.	Pressure,		Wt.
Lb./Sq. Inch	Time,	Methane	Lb./Sq. Inch	Time,	Methane L	b./Sq. Inch	Time,	Methane
Absolute	Sec.	Added ^a , Lb.	Absolute	Sec.	Added ^a , Lb.	Absolute	Sec.	Added ^a , Lb.
		10 ⁰ F.		9670	714.69	1019.9 ^b	0	-
				10600	756.01	1220.60	540	0
83.8 ^b	0	-		11460	787.41		960	169.46x10 ⁻⁰
284.5 ^C	280	0		12380	825.10		1550	271.37
	720	84.84x10-6		14750	910 38		2840	408.27
	1200	148.02		16350	962.28		4930	404.00 559 63
	1690	199.59		17290	992.04		6570	651.30
	2222	249.88		19660	1061.12		7940	720.65
	3070	311.25		21910	1119.64		9340	778.54
	3920 4870	370.43 425 49		22790	1140.46		10780	838.85
	5730	470 10		23510	1761.60		12320	895.53
	6760	523.74		23830	1771.18		13740	943.78
	7760	564.99		20100	1//1.18		10440	1032.43
	8880	608.83			40 ⁰ F		18960	1103.50
	9970	651.12	100.6 ^b	0	-		20700	1150.02
	10960	688.64	301.4 ^C	580	0		22150	1185.60
	12000	/35.19		1220	82.08x10 ⁻⁶		23940	1234.95
	14730	820 31		2030	163.07		25950	1279.68
	17070	867.09		2840	223.54		27980	1316.46
	18530	898.55		4100	302.89		30070	1358.68
	19900	932.33		0459	421.50		33150	1418.38
	21120	957.09		8438	548.30		30510	1473.86
	231 70	993.83		10465	575 54		40410	1537.78
	24340	1012.66		11830	616.45		46540	1618 59
	25510	1028.90		13394	660,91		50240	1663 82
	26200	1040.25		15280	707.01		50420	1902.03
	2/900	1003.72		17020	745.05		50580	2012.99
	20070	1313 72		19000	778.43		50690	2027.46
	32050	1313.72		20290	1051.22		52580	2027.46
noo -h	0-000	-010172		22008	1053.82	1219.4 ^b	0	-
298.70	200	-		24/1/	1053.82	1420.1 ^c	550	0
499.40	290 520	71 02-10-6	302 0b	Ω	_		1090	120.27×10 ⁻⁰
	780	120.03	603.0°	690	0		2770	371.88
	1160	175.77	000,0	970	90.56x10-6		5160	532.31
	1630	220.17		1575	206.80		6840	022.09
	2140	271.05		2590	346.16		10690	703.24
	2 870	327.95		3590	453.09		12520	862.52
	3600	374.67		4590	545.34		13950	922.29
	4540	448.67		5670	632.24		15130	960.72
	5040	507.19		8220	/04.18		16370	999.15
	7720	613 34		10150	916.05		17720	1043.99
	8770	662.14		12180	1017.33		19190	1090.24
	10000	713,25		14630	1124.82		20806	1134.36
	11510	768.76		16920	1212.84		22320	1211 03
	12590	806.92		20050	1314.97		24020	1253 92
	13670	843.46		22480	1382.96		27230	1301.60
	14640	876.30		24120	1424.15		29760	1367.78
	15610	905.21		26170	1848.74		31770	1414.04
	10490	929.03		28/00	1851.28		33840	1459.59
	18230	976 21		52170	1001.20		35870	1505.13
	20910	1042.13	602.3 ^D	0	-		44130	1659.14
	22120	1068.03	903.40	510	164 71-10-6		44490	2304.31
	2331 0	1093.93		/82	265.06		44000	2350,57
	24130	1109.20		2235	460.66		48690	2357.68
	25430	1531.04		3210	575.83		100/0	2001.00
	28090	1531.04		3841	641.45			
449.4 ^b	0	-		5470	784.43			
700.1 ^c	5 3 0	0		6625	874.83			100 ⁰ F.
	890	105.45x10 ⁻⁰		8368	992.60	aa n th	0	
	1330	168.59		9720	1075.17	297.40	0	-
	2340	207./4		13300	1262.38	390.32	1410	91.23x10-6
	3230	351 30		15260	1357 66		2290	208.20
	3980	408.58		17400	1442.40		3840	368.27
	4550	443.62		20280	1554.52		5360	482.45
	5110	482.96		22 880	1640.57		7960	641.96
	6910	582.79		25050	2365.47		10100	755.01
	7910	636.67		27410	2367.64		11750	837.00
	8760	0/4.03		30880	230/.04		14000	930.34

	TABLE I.	DIFFUSION OF ME	THANE INTO	THE LIQU MENTAL I	ID PHASE OF THE ME MEASUREMENTS) (Cont	THANE-BUTAN	NE SYSTEM	
Pressure,		Wt.	Pressure,		Wt.	Pressure,		Wt.
Lb./Sq. Inch Absolute	Time, Sec.	Methane Added ^a , Lb.	Lb./Sq. Inch Absolute	Time, Sec.	Methane Added ^a , Lb.	Lb./Sq. Inch Absolute	Time, Sec.	Methane Added ^a , Lb.
	16270	1018.06	894.6 ^b	0	-	1249.4 ^b	0	-
	19250	1119.92	1193.7 ^c	950	0	1450.2 ^C	490	0
	20910	1173.09		1390	107.12x10 ⁻⁰		770	60.44x10 ⁻⁰
	22980	1229.00		2130	214.82		1570	140.04
	26070	1734.74		4660	465.54		3350	269.43
	28080	1751.53		6520	603.26		4020	308.02
	28910	1751,53		8440	719.21		4940	349.53
502 0b	0	_		11240	858.69		6520	419.43
894.0 ^c	610	0		15880	1056.44		/300	443.40
	770	65.33x10 ⁻⁶		19680	1190.63		9590	522.10
	1420	183.08		22740	2280.62		11520	565.07
	2180	285.37		25580	2280.62		13460	611.67
	3990	462.44		2/400	2280.02		14750	639.34
	4950	533.35					16620	679.39
	5930	604.26			160° F.		17240	1224.07
	7170	677.32					17730	1294.70
	8420	751.67	245.4 ^b	0	-		21850	1294.70
	11050	883.61	446.1 ^C	520	0		22	00 E
	12790	969.57		820	26.30x10 ⁻⁰		22	5-г.
	15320	1080.45		3255	166 23	414.9 ^b	0	-
	17750	1171,56		4655	238.36	615.6 ^c	460	0
	21110	1290.61		5900	291.78		2080	19.03×10 ⁻⁰
	23870	2172.08		7855	365.14		2320	42.68
	24710	2173.37		9060	404.18		3650	117.37
	54610	2173.37		11250	480.83		4270	149.09
				14390	532.40		5020	183.69
598.6 ^b	0	-		15050	751.86		5730	210.22
899.7 ^c	790	0		15230	764.19		7550	237.23
	1060	78.74x10 ⁻⁰		1/510	/04.19		8290	298.75
	14/0	153.15					8830	314.32
	2750	316.26					9930	346.62
	3960	431.34	847.6 ^b	0	-		12650	406.60
	5170	531.71	1048.3 ^C	610	0		14360	433 42
	6570	619.96		1380	118.46x10 ⁻⁰		17220	471.78
	8900	//3.98 921 94		2220	223.65		19320	496.00
	14030	1014.53		3260	246.12		21810	526.85
	16910	1136.96		4260	296.16		25360	543.58
	19420	1225.65		5250	340.07		31690	605.00
	21210	1283.63		7260 9030	420.75		33930	605.00
	25060	2045.93		11070	544.32			
	26990	2045.93		14260	630.10			
				17370	705.16	1018.0 ^D	0	-
804 3b	0	_		20540	/04.91	1210.0	530	37 33x10-6
1195.4 ^C	430	0		21/00	1080.47		1040	69.85
	650	25.91x10 ⁻⁶		25810	1080.47		1810	115.01
	980	104.24		28780	1080.47		3330	189.67
	1480	197.89					4460	236.03
	2080	482 36					7410	279.99
	5260	548.91	1048.8 ^b	0	-		8200	360.67
	6330	619.58	1249.5 ^C	500	0		9730	405.23
	6860	655.51		1080	44.25x10-0		12110	458.22
	8350	743.85		1670	165.12		13220	482.30
	9860	825.13		3350	278.28		15910	531.08
	10870	873.42		4520	333.32		18010	568.41
	11710	922.30		6270	403.82		19130	584.06
	12990	978.26		8910	491.02		20920	009.90 639.46
	14200	1085 45		10850	540.08		25560	660.53
	17170	1151.41		15300	656.13		27130	895.36
	18780	1207.94		17700	706.22		31090	895.36
	20050	1257.42		19850	745.80			
	2354U 24500	2469 49		22280	783.00			
	26690	2500.71		25790	1163.23 a We	ight added to he	terogeneous	isochoric system
	27450	2500.71		27560	1174.98 ^b Init	ial equilibrium	pressure.	
	29080	2500.71		32880	1174.98 ^C Cor	istant operating	pressure di	iring diffusion.

CHEMICAL AND ENGINEERING DATA SERIES 73

in accordance with the predictions of Schrage (17), who indicated that interfacial resistance would be important only when the mean-free path of the molecules approached the dimensions of the interface. A more extended review of the literature applying to material transport is available (11).

A review of the available information indicated the need for data concerning the diffusion of methane in the quiescent liquid phase of the methane-n-butane system. This report describes experimental measurements of the Fick diffusion coefficient by transient methods for pressures within 500 pounds/square inch of the critical pressures of the methane-n-butane system at temperatures between 10° and 220° F.

METHODS AND APPARATUS

The method employed involves the introduction of methane into an isochoric vessel which is partially filled with a heterogeneous mixture of methane and n-butane. The

Figure 1. Effect of hydrodynamic velocity on experimental Fick diffusion coefficient

pressure was suddenly raised from the equilibrium value to some predetermined higher level. It was maintained at this level, and the quantity of methane introduced was determined as a function of time. The details of the equipment have already been described (11). The standard error of estimate for the weight of methane added was approximately 0.3×10^{-6} pounds. Time was measured with a maximum uncertainty of two seconds in a period of about eight hours. The pressure was maintained at a constant value within 0.1 pound/square inch and was known within 0.05%. Temperatures were determined with strain-free platinum resistance thermometers which were compared to a similar set of instruments calibrated by the National Bureau of Standards. The temperatures of the bath surrounding the isochoric vessel were related to the international platinum scale within 0.02° F. Small vertical tubes were placed in the isochoric vessel to decrease the influence of local vibration and convection in the liquid phase. The quantity of n-butane introduced was determined by weighing bomb techniques (15) and no measurements were made when the change in volume of the liquid phase from the solution of methane raised the interface above the upper end of the vertical tubes.

Following methods of analysis which have already been described (11), the Fick diffusion coefficient was calculated from the experimental measurements by means of the following expression:

$$D_{\mathbf{r},\mathbf{k}} = \left[\frac{(1+\bar{\mathbf{V}}_{j,1}^{*}\sigma_{j}+\bar{\mathbf{V}}_{\mathbf{k},1}^{*}\sigma_{\mathbf{k}})}{(1+\bar{\mathbf{V}}_{j,1}^{*}\sigma_{j})\left(1+\frac{\sigma_{\mathbf{k}}}{\sigma_{j}}\right)}\right]^{*}\left[\frac{\pi \mathbf{m}_{\mathbf{k},\mathbf{e}}^{2}}{4\theta(\sigma_{\mathbf{k},1,\mathbf{e}}-\sigma_{\mathbf{k},0})}\right]\left[\frac{\bar{\mathbf{V}}_{\mathbf{k},\mathbf{g}}^{*}-\bar{\mathbf{V}}_{\mathbf{k},1}^{*}\right]^{2}$$

Equation 1 takes into account the change in volume of the liquid phase and the hydrodynamic velocity (8) but neglects the resistance at the interface. The asterisk on the bracketed first term and in the last term indicates an average over the range of conditions encountered in a particular measurement. Expressions taking the resistance into account can be derived, but in the present instance the resistance does not appear great enough to permit its accurate evaluation.

In order to evaluate the terms in Equation 1, earlier measurements upon the volumetric and phase behavior of the methane-n-butane system at equilibrium were employed (10, 12, 13). The magnitude of the first bracketed term in Equation 1 which takes into account the hydrodynamic velocity is shown in Figure 1 where it is designated as the volumetric correction factor. The magnitude of this correction is significant, particularly at the lower temperatures. The correction for the change in volume of the liquid phase as it is employed in the last bracket of the equation is shown in Figure 2 where it is designated as the weight correction factor since it takes into account the difference in weight of methane introduced and that passing the interface. In this instance the correction is of similar magnitude but is greater than unity. Thus, it is seen that the two corrections tend to compensate one another. It should be emphasized that Equation 1 and the application of the corrections from Figures 1 and 2 are based entirely upon the assumption of local equilibrium (3, 6) throughout the phase.

MATERIALS

The methane employed in this investigation was obtained from a well in the San Joaquin Valley of California and contained approximately 0.003 mole fraction of carbon dioxide, traces of heavier hydrocarbons, and was saturated with water. The gas was dried by passage over anhydrous calcium sulfate and the carbon dioxide and heavier hydrocarbons were removed by contact with potassium hydroxide, activated charcoal, Ascarite, and alumina. The gas employed did not contain more than 0.001 mole fraction of material other than methane. The n-butane was purchased as pure grade from the Phillips Petroleum Co. and was reported to contain less than 0.01 mole fraction of material other than n-butane. The n-butane was fractionated once

Figure 2. Influence of change in volume of the liquid phase on the weight of methane crossing interface

Pres Lb./Sq Abso	ssure, I. Inch	Com M Weight	position ethane, Fraction	Concen Meth Lb./Cu	tration nane, 1. Ft.	<u> </u>	Standard Error of Estimate,	Volumetric Correction Factor	Fick Diff Coeffic Sq. Ft.	usion ient, /Sec
Initial	Final	Initial	Final	Initial	Final	Lb. ² /Sec.	Lb.		Uncorrected	Corrected
						10º F. ^b				
83.8 298.7 499.4	284.5 499.4 700.1	0.011 0.040 0.069	0.038 0.069 0.098	0.361 1.380 2.360	1.311 2.360 3.363	59.753 x 10-12 68.393 73.102	2.5 x 10-6 3.1 5.7	0.9724 0.9498 0.9269	14.161 x 10 ⁻⁸ 15.320 15.644	13.770 x 10 ⁻⁸ 14.551 14.500
						40° F. ^b				
100.6 302.0 602.3 1019.9 1219.4	301.4 603.0 903.4 1220.6 1420.1	0.009 0.035 0.074 0.135 0.168	0.035 0.074 0.117 0.169 0.214	0.360 1.226 2.578 4.506 5.436	1.221 2.580 3.912 5.441 6.382	52.998 x 10 ⁻¹² 130.188 144.000 66.260 68.724	1.1 x 10 ⁻⁶ 3.2 6.6 4.5 5.0	0.9753 0.9468 0.9178 0.8873 0.8713	15.316 x 10-8 15.232 17.568 16.631 16.906	14.938 x 10 ⁻⁸ 14.422 16.124 14.757 14.730
						100° F.				
297.4 592.9 598.6 894.3 894.6	598.5 894.0 899.7 1195.4 1193.7	0.025 0.059 0.060 0.098 0.098	0.060 0.098 0.099 0.144 0.144	0.870 1.947 1.970 3.070 3.090	1.970 3.070 3.090 4.208 4.206	100.000 105.678 108.994 105.473 104.653	9.5 x 10 ⁻⁶ 3.1 5.7 3.2 8.0	0.9613 0.9411 0.9407 0.9220 0.9220	17.900 x 10 ⁻⁸ 18.282 18.965 17.930 18.419	17.207 x 10 ⁻⁸ 17.205 17.840 16.531 16.982
						160 ⁰ F.				
245.4 847.6 1048.8 1249.4	446.1 1048.3 1249.5 1450.2	0.012 0.075 0.100 0.129	0.031 0.100 0.129 0.164	0.361 2.150 2.759 3.367	0.949 2.756 3.367 3.975	39.188 x 10-12 37.454 35.284 34.222	0.8 x 10-6 1.2 2.5 7.5	0.9816 0.9548 0.9511 0.9514	24.610 x 10 ⁻⁸ 22.510 21.241 20.841	24.157 x 10 ⁻⁸ 21.493 20.202 19.828
						220 ⁰ F.				
414.9 L018.0	615.6 1218.8	0.016 0.080	0.035 0.109	0.429 1.949	0.929 2.460	35.402 x 10 ⁻¹² 27.353	4.2 x 10 ⁻⁶ 2.5	0.9870 0.9869	31.366 x 10 ⁻⁸ 23.879	30.958 x 10 ⁻⁸ 23.566
9										

TABLE II. SUMMARY OF EXPERIMENTAL RESULTS

^a Effective cross-sectional area = 0.019262 sq. ft.

b Values of phase composition, concentration, and volumetric correction factor are extrapolated from data at higher temperatures.

and collected under vacuum at liquid nitrogen temperature. Its vapor pressure at 160° F, was within 0.1 pound/square inch of a critically chosen value (14).

EXPERIMENTAL MEASUREMENTS

A series of measurements of the quantity of methane introduced as a function of time were made for several different compositions of the liquid phase at each of five temperatures between 10° and 220° F, inclusive. In this investigation nonequilibrium pressure differentials from 100 to 200 pounds/square inch were employed. As would be expected, for each measurement which covered only a small range in composition, the weight of methane added was nearly a linear function of the square root of time. The measurements were usually carried to such a point that approximately 50% of the methane required to bring the system to equilibrium, was added. As pointed out by Pomeroy (9), beyond this point it is impossible to treat the liquid phase as an infinite body, and simple relationships between quantity of methane added and time no longer exist. The results of experimental measurements are given in Table I.

Table II summarizes the experimental results obtained in this investigation. The deviation of the experimental points from a line of constant value of $\Delta m_k / \theta^{1/2}$ has been included for each set of measurements. In this instance it was assumed that all of the error was associated with the weight of methane added and none with the time. The average standard error of estimate for all the experimental data was 4.2×10^{-6} pounds. The Fick diffusion coefficient was evaluated through Equation 1, utilizing the equilibrium data in Figures 1 and 2,

From the values of the Fick diffusion coefficient recorded in Table II the influence of state on this coefficient can be seen. The experimental results are shown in Figure 3 as a function of the mean of the initial and final pressure associated with each measurement. The measured Fick diffusion coefficients were assumed to apply at this mean pressure. The smooth curves drawn through the experimental points have been located so as to yield the minimum standard error of estimate. The small number of experimental points obtained at 220° F. resulted in greater uncertainty than that for the lower temperatures. Lines of

TABLE III. DEVIATIONS OF EXPERIMENTAL MEASUREMENTS FROM SMOOTHED DATA

Tomp	Average	Difference	Standard Deviation	Relative Deviation, %	
° F.	With sign	Without sign	Sq. Ft./Sec.		
10	0.01 x 10-8	0.29 x 10 ⁻⁸	0.38 x 10 ⁻⁸	2.66	
40	-0.05	0.52	0.69	4.63	
100	-0.07	0.30	0.42	2.44	
160	0.06	0.28	0.44	2.04	
220	-0.36	1.24	1.02	3.76	
Av.	-0.08	0.53	0.59	3.11	

constant composition have been included in Figure 3, together with an estimate of the location of the critical state. A summary of deviations in the individual measurements of the Fick diffusion coefficient from the smoothed data is presented in Table III. It appears that the relative standard deviation is about 3.1%, which is somewhat smaller than would be expected considering the uncertainties in the individual measurements. The effect of temperature upon the Fick diffusion coefficient is shown in Figure 4. At the lower temperatures an increase in pressure results in an increase in the diffusion coefficient. However, for temperatures above approximately 80° F. an increase in pressure results in a significant decrease in the Fick diffusion coefficient. The approximate position of the limiting curve associated with the critical state has been included. Table IV presents smoothed values of the Fick

TABLE IV. F	ICK DIFFUSIO	N COEFFICIENT F	OR METHANE
Pressure, Lb./Sq. Inch Absolute	Concn., Lb./Cu. Ft.	Compn., Weight Fraction	Fick Diffusion Coefficient, Sq. Ft./Sec.
		10º F.ª	
19 ^b 250 500 750 1000 1250 1500	0 1.146 2.359 3.619 4.871 6.146 7.399	0 0.034 0.069 0.105 0.145 0.190 0.258	14.1 x 10 ⁻⁸ 14.2 14.3 14.4 14.5 ^c 14.6 ^c 14.8 ^c
		40° F. ^a	
26 ^b 250 500 750 1000 1250 1500	0 1.001 2.112 3.258 4.410 5.578 6.759	0 0.028 0.061 0.094 0.131 0.174 0.234	14.9 x 10 ⁻⁸ 14.9 15.0 15.0 15.1 15.2 15.4 ^c
		100 ⁰ F.	
51.5 ^b 250 500 750 1000 1250 1500	0 0.699 1.601 2.529 3.468 4.418 5.346	0 0.020 0.048 0.079 0.114 0.154 0.203	17.6 x 10 ⁻⁸ 17.5 17.4 17.2 17.1 17.0 ^c 16.9 ^c
		160 ⁰ F.	
120.6 ^b 250 500 750 1000 1250 1500	0 0.376 1.112 1.860 2.609 3.366 4.124	0 0.012 0.036 0.064 0.094 0.128 0.174	25.3 x 10 ⁻⁸ 24.7 23.5 22.4 21.2 20.1 19.0 ^c
		220 ⁰ F.	
241.2 ^b 250 500 750 1000 1250 1500	0 0.019 0.640 1.267 1.904 2.541 3.178	0 0.001 0.023 0.049 0.078 0.114 0.177	32.6 x 10 ⁻⁸ 32.5 30.2 28.0 26.1 24.1 ^c 22.3 ^c
a Compositio	n and concentr	ation values were e	xtrapolated from

Composition and concentration values were extrapolated from data at higher temperatures.

^b Vapor pressure of n-butane expressed in lb./sq. inch.
 ^c Values were obtained from extrapolation of experimental data

10°F 0 40°F ۰ م 100°F 32.5 ò 160°F SEC.) X 10⁸ 0 220°F 30.0 ã PER 27.5 SSURE F T ŝ 25.0 â ž 5.00d W ĝ RACTION 22.5 FICK DIFFUSION COEFFICIENT ESTIMATED 20.0 3 00 17.5 10/0 63 0.20 003 Ż 15.0 0 12. 250 500 750 1000 1250 1500 1750 PRESSURE LB. PER SO. IN.

Figure 3. Influence of pressure on Fick diffusion coefficient

diffusion coefficient as a function of state. For the convenience of the reader, the composition, pressure, and temperature of the phase have been indicated. The relation of these variables was taken from earlier studies of the equilibrium behavior of the methane-n-butane system (10, 12, 13). The results obtained in this investigation are in accord with other studies of the transport characteristics of methane in the liquid phase of other binary hydrocarbon systems.

Figure 4. Effect of temperature on Fick diffusion coefficient

at lower pressures.

ACKNOWLEDGMENT

This work constitutes a contribution from Project 37 of the American Petroleum Institute at the California Institute of Technology. The methane was supplied through the courtesy of The Texas Co. Virginia Berry carried out the calculations and B. Lawson Miller assisted with the preparation of the manuscript. W. N. Lacey contributed by his interest in the research program and his review of the manuscript.

NOMENCLATURE

$\mathbf{D}_{\mathbf{F},\mathbf{k}}$	-	Fick diffusion coefficient of component k, sq. ft./sec.
mk	=	weight of component k added per unit area of interface, lb./sq. ft.
Vk	-	partial specific volume of component k, cu. ft./lb.
Δ	-	difference in
θ	-	time, sec.
$\sigma_{\mathbf{k}}$	=	concentration of component k, lb./cu. ft.
Supersc	ript	
*		average condition
Subscri	pts	
с	-	diffusion cell
e	=	conditions at equilibrium
g	-	gas phase
i	=	conditions at interface
j	_	component j, the stagnant component
k	-	component k, the diffusing component
1	-	liquid phase
0	=	initial conditions

LITERATURE CITED

- (1) Bertram, E. A., Lacey, W. N., Ind. Eng. Chem. 28, 316 (1936).
- (2) Emmert, R. E., Pigford, R. L., Chem. Eng. Progr. 50, 87 (1954).
- (3) Groot, S. R., de, "Thermodynamics of Irreversible Proces-ses," North Holland Pub. Co., Amsterdam, 1952.
- (4) Hill, E. S., Lacey, W. N., Ind. Eng. Chem. 26, 1324 (1934). (5) Ibid., p. 1327.
- (6) Kirkwood, J. G., Crawford, B., Jr., J. Pnys. Chem. 56, 1048 (1952)
- (7) Lacey, W. N., Oil Gas J. <u>30</u>, No. 8, 15; 9, 68 (1931).
 (8) Opfell, J. B., Sage, B. H., Ind. Eng. Chem. <u>47</u>, 918 (1955).
 (9) Pomeroy, R. D., Lacey, W. N., Scudder, N. F., Stapp, F. P.,
- Ibid., 25, 1014 (1933). (10) Reamer, H. H., Korpi, K. J., Sage, B. H., Lacey, W. N., Ibid.,
- 39, 206 (1947).
- (11) Reamer, H. H., Opfell, J. B., Sage, B. H., Ind. Eng. Chem. 48, 275-82 (1956).
- Reamer, H. H., Duffy, C. H., Sage, B. H., Ibid., pp. 282-4. Reamer, H. H., Duffy, C. H., Sage, B. H., Ibid., pp. 284-7.
- (12) Sage, B. H., Budenholzer, R. A., Lacey, W. N., Ind. Eng. Chem. 32, 1262 (1940).
- (13) Sage, B. H., Hicks, B. L., Lacey, W. N., Ind. Eng. Chem. 32, 1085 (1940).
- (14) Sage, B. H., Lacey, W. N., "Thermodynamic Properties of the Lighter Paraffin Hydrocarbons and Nitrogen," Am. Petroleum Inst., New York, 1950.
- (15) Sage, B. H., Lacey, W. N., Trans. Am. Inst., Mining Met. Engrs. 136, 136 (1940) (Tech. Publ. 1127). (16) Schlinger, W. G., Reamer, H. H., Sage, B. H., Lacey, W. N.,
- "Diffusion Coefficients in Hydrocarbon System- n-Hexane and n-Heptane in Air," Am. Petroleum Inst., Biennial Volume, pp. 70-106, 1952-53.
- (17) Schrage, R. W., "Theoretical Study of Interphase Mass Transfer," Columbia Univ. Press, New York, 1953.
- (18) Tung, L. H., Drickamer, H. G., J. Chem. Phys. 20, 6 (1952).
- (19) Ibid., p. 10.

Received for review January 16, 1956 Accepted March 7, 1956

Generalized Charts of Detonation Parameters for Gaseous Mixtures

BERNARD T. WOLFSON AND ROBERT G. DUNN

Wright Air Development Center, Wright-Patterson Air Force Base, Ohio

Where detonative combustion is involved, it is frequently desirable to visualize the relationships among various detonation parameters. To fulfill this need, generalized charts of detonation parameters for all gaseous mixtures, involving only nondimensional quantities, are given. The chief usefulness of these plots of generalized equations, derived directly from the classical equations of detonation, is to provide a means for visualizing relationships among the detonation parameters for all gaseous mixtures on a small number of Mollier-type diagrams. Application of these generalized charts is illustrated by means of several examples.

There is need of simplified methods for determining and visualizing values of detonation parameters for all gaseous mixtures. Considerably more information on detonation parameters is required before the advantageous application of supersonic burning in propulsive devices can be realized. Such information may also have direct application in understanding instability phenomena (such as screech) in ramjet, turbojet, afterburner, and rocket engines. These instability phenomena and their possible association with detonative combustion have been discussed in the literature (6, 8).

To provide simplified means for analytically determining values of detonation parameters, the classical equations of detonation were previously rearranged (2), and also a calculation procedure based on the resulting generalized equations, involving only nondimensional quantities, was devised. During the process of generalizing the detonation equations it became apparent that it would be extremely useful if the detonation parameters for all gaseous mixtures could be presented in nondimensional form on a Mollier-type diagram. This would aid considerably in visualization of relationships among the various detonation parameters. It was found that the generalized detonation equations could be utilized for the graphical presentation of the detonation parameters on a small number of Mollier-type diagrams.

In this article, derivation of the generalized detonation equations is summarized, and the method of constructing the generalized charts based on these equations is described. Application of the generalized detonation charts is illustrated by means of several examples.

DERIVATION OF EQUATIONS FOR THE GENERALIZED CHARTS

The assumptions utilized in the derivation following are generally introduced where required. It is assumed